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Multiple-Mode Structural Vibration Control Using 
Negative Capacitive Shunt Damping 

Chul Hue Park*, Hyun Chul Park 
Department of  Mechanical Engineering, Pohang University of  Science and Technology, 

San 31 Hyoja Dong, Pohang, KyungBuk, 790-784, Korea 

This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibra- 

tion amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic 

behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative 

capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional  

frequency are considered. The mechanism of the shunt damper is also described by considering 

a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam 

system with a negative capacitive shunting, the governing equations of motion are derived 

through the Hamilton's principle and a piezo sensor equation as well as a shunt-damping matrix 

is developed. The theoretical analysis shows that the piezo/beam system combined with a series 

and a parallel resistor-negative capacitor branch circuit developed in this study can significantly 

reduce the multiple-mode vibration amplitudes over the whole structural frequency range. 
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1. Introduction 

Multiple-mode structural vibration control us- 

ing a shunt circuit has received enormous atten- 

tion due to its desirable vibration reduction char- 

acteristics and low power requirement. Browning 

and Wynn (1993) performed an experiment that 

achieves simultaneous reduction of multiple vi- 

bration modes by applying multiple piezoceramic 

elements bonded to the surface of a plate with a 

resonant shunting technique. Hollkamp (1994) 

developed a theory to suppress multiple modes by 

using a single piezoelectric element coupled with 

a multimode shunt network. Wu (1998) presented 

a shunt network for damping multiple vibration 

modes by employing blocking circuits that act as 
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a filter for screening unwanted current frequen- 

cies. Moon et al. (2002) investigated the nonlinear 

flutter problem of a composite panel by emplo- 

ying in turn one shunt circuit and two indepen- 

dent inductor-resistor shunt circuits. 

A new multiple-mode vibration damper is in- 

troduced in this paper by using negative capaci- 

tive shunting ; one is connected to the terminals of 

a PZT with a resistor-negative capacitor shunt 

branch circuit in series, the other is connected 

with it in parallel as shown in Fig. 1. The nega- 

tive capacitance circuit provides the negative ca- 

pacitance of a magnitude that cancels the internal 

capacitance of the PZT patch to maximize the 

energy dissipation (Forward, 1979). Therefore, 

the electrical impedance of a shunted piezo/beam 

system reduces to that of resistance, which is 

frequency independent and makes it possible to 

control multiple vibration modes. 

A piezo patch attached on the beam with a 

series resistor-negative capacitive shunting is 

designed to control the vibration amplitudes in 

the low frequency range. The other patch bonded 

below the beam with parallel resistor-negative 
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Fig. 1 A schematic drawing of the shunted piezo/ 
beam system 

capacitive shunting is for suppressing vibration 

modes in the high frequency range. The equations 

of motion of  the shunted piezo/beam system are 

formulated using Hamilton's  principle. Assumed 

shape functions, satisfying the boundary condi- 

tions, are used to analyze the flexural motion of 

the cantilevered piezo/beam system. The obtained 

result shows that negative capacitive shunting 

provides an effective means for multimode vibra- 

tion damping over a broadband structural fre- 

quency range. 

2. Characterist ics of a Negative 
Capacitive Shunting 

The characteristic behaviors of a negative ca- 

pacitive shunting can be expressed in terms of the 

non-dimensional  mechanical impedance, ZMe. It 

is expressed in terms of the stiffness ratio, E ( w ) ,  

and material loss factor, z](w), which are fre- 

quency dependent. 

ZME=E(CO) [1 + r] (CO) ] (1) 

In order to develop the non-dimensional  mechani- 

cal impedance of piezo shunt, the current and the 

strain are defined as follows : 

l=_J__ 1 
Zpzr Vsu+ s A d T  (2) 

d 
S =  T V s n + s e T  (3) 

where TPzr is the impedance of piezoelectric ma- 
terial given by 

1 
ZPzr -- (4) 

s C f  

where C r is the internal capacitance of PZT 

measured at constant stress and s is the Laplace 

parameter. The current, I ,  is generated by external 

stress and is fed back into the PZT and Vsu is the 

voltage across the shunt impedance as shown in 

Fig. 2. In Eq. (2), A ,  d,  and t denote the dia- 

gonal matrix of  the surface area of a piezo mate- 

rial, piezo material constant, and thickness matrix 

of the piezo bar, respectively. In Eq. (3), S and T 

denote the mechanical strain and stress matrices. 

According to Fig. 2, the shunt voltage is given by 

Vsx  = - Z s ~ I  ( 5 ) 

where Zsn is the electrical impedance of the shunt 

circuit. The shunt voltage can be rewritten by 

substituting the current in Eq. (5) into Eq. (2). 

Vsn = - s A Z ~ M  T 

where 

1 1 1 
- -  ~ ( 6 )  

Z~L - ZPzr Zsn 

Substituting Eq. (6) into mechanical strain equa- 

tion [Eq. (3)],  the shunt strain can be obtained 

by 

Ssn = d (  _ s A Z ~ L d T )  + s ~ T 
(7) 

= s E T ( 1 - s C f k ~ Z ~ L )  = s E T ( 1 - k~jZEL) 

where bz .=  di~__~ and the non-dimensional  elec- 
, ~ z j  sEcT i 

trical impedance is defined as Z~,eL=ZEL/ZPzr. 

Following the definition of the non-dimensional  

mechanical impedance, ZMg, it is expressed as 

(Hagood and yon Flotow, 1991) 

- S ° - -  ( l - k i ~ )  ( 8 )  
ZM~=-Ss,~ ( 1 -  k~.g~L) 

where S D is the piezoelectric material compliance 
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Circuit models of piezoceramic with (a) a 

series and (b) a parallel negative capacitive 
shunt branch circuit 

taken at constant electrical displacement and 

SsH is the shunted piezoelectric compliance. The 

non-dimensional  electrical impedance, ZeL, for 

the negative capacitive shunting can be obtained 

by considering the PZT circuit model with a resis- 

tor-negative capacitor branch circuit as shown in 

Fig. 3. 

In the series case, 

~sE_  ( s R C r ~ - I )  C [  ' 
Z ~  T T T T C.  - Cp + sRCp C.  

In the parallel case, 

s C a R  Z ~ -  
I + s C ~ R - s R C ~ R  

(9a) 

(9b) 

where - C  r is an external negative capacitor 

value, which should be the same as that of the 

inherent piezoelectric transducer capacitance C~, 

for impedance matching. Substituting Eq. (9) into 

Eq. (8) and equating C[  to Cn T, the non-dimen- 

sional mechanical equation, ZME, reduces to : 

In the series case, 

k~ + p~ , 2 kij + Pi 
(10a) 

In the parallel case, 
~p~ _ (I - k ~ . )  s 
ZME ( I - k Z )  2+ (k2.~#~) z 

p k L ( I -  z s ki~ ) 
+ i  

(ki~pi) 

(lOb) 

where p~ is the non-dimensional  frequency and is 

defined by 

p i =  R,C~,oJ--ad co, ( l I I 

and C.~ is defined as C~,=Cf~(I-k~. j ) .  From 

Eq. (10), the non-dimensional  mechanical impe- 

dance, ZMe, is a complex number and dependent 

on the non-dimensional  frequency. According to 

Eq (1), the stiffness ratio (the ratio of shunted 

stiffness to open circuit stiffness) E and the ma- 

terial loss factor r] can be derived as follows : 

In the series case, 

Esg (~o) = R e ( Z ~ )  = P~ 
4 2 '  ki~ + pi 

vsE_ Im ( g ~ )  = k,~ (12a) 

Re (gift)  pi 

in the parallel case, 
( l - k ~ j )  s 

E pA (co) = Re (Z~ A) = 
(1 k 2 , 2 + , k  z ,2, 

(12b) 
flea - lm (Z~P~) _ pki~ 

Re ( Z ~ )  ( 1 -- k~) 2 

The stiffness ratio and loss factor of a negative 

capacitive shunting are plotted versus the non-  

dimensional frequency in Fig. 4 for both branch 

circuits. The electromechanical coupling coeffi- 

cient ks,, used for the present analysis is 0.33. It 

is clear that the stiffness ratio decreases with 

increasing non-dimensional  frequency and goes 

to zero in the parallel case. On the contrary, the 

stiffness ratio starts from zero and increases with 

increasing non-dimensional  frequency in the se- 

ries case. 

The electromechanical coupling coefficient k~j 

is commonly used as a criterion for measuring the 

damping capability of a piezoelectric material and 

is defined as the ratio of the stored mechanical 

(electrical energy) to the total energy imposed 

and described in the following form (Lesieutre 

and Davis, 1997): 

k~ --  c % S +  e2 ( 1 3) 

where c E is a matrix of elastic coefficients at cons- 

tant electric field, e is a matrix of piezoelectric 

coefficient, and e s is a matrix of dielectric per- 

mittivity at constant strain. From Eq. (13), as 

the elastic coefficient approaches zero, the elec- 

tromechanical coupling coefficient becomes unity. 
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Material properties of a series and a parallel 
negative capacitive shunt 

This means that the energy conversion factor bet- 

ween the mechanical energy and electrical energy 

is 100%. According to Fig. 4(a),  this phenome- 

non occurs at high frequencies in the parallel case 

and at low frequencies in the series case. 

Figure 4(b) certifies that the material loss fac- 

tor increases with increasing the non-dimensional  

frequency in the parallel shunt branch circuit and 

decreases with increasing the non-dimensional  

frequency in the series shunt branch circuit. This 

fact shows that the parallel shunt branch circuit 

can obtain more damping in high frequency range 

and the series shunt branch circuit can do so in 

low frequency range. 

3. General Modeling of Shunted 
Actuator 

The piezo shunt circuit generates an additional 

damping matrix that can be added to the equa- 

tions of motion of a structural system. A pair of 

piezoelectric actuator/sensor equations (Hagood 

et al, 1990) is used to derive an additional shunt- 

damping matrix. 

Actuator equation : 

Mii~+ Clb+ Kw=fex t  + tgVsH (14) 

Sensor equation : 

q = Orw  + Cp Vsn (15) 

where M, C, and K are the mass, damping, and 

stiffness matrices of the piezo/beam system mea- 

sured at constant field (short circuit). Hence, the 

system stiffness consists of a base structure stiff- 

ness and a short circuited piezoelectric stiffness, 

that is, K = K s + K f f .  In the sensor equation, q is 

the piezoelectric charge matrix and 0 is the elec- 

tromechanical coupling matrix. This piezoelectric 

actuator/sensor equation accounts for the effects 

of dynamic coupling between a structure and an 

electrical network through the piezoelectric effect. 

A current equation can be obtained by differ- 

entiating the sensor equation [Eq. (15) ]. Substi- 

tuting it into the shunt voltage equation as shown 

in Fig. 2, we can redefine it as follows : 

Vsn = -- ZsnI 
= - Z s n  ( Orfv -t- C~, Vsn) (16) 

= -- Zsn 0 rsw - Zsn Cps Vsn 

where s is the Laplace parameter. Therefore, the 

new defined shunt voltage can be 

- ZsnOr sw (17) 
Vsn - l + ZsnCps  

Substituting Eq. (17) into the actuator equation 

[Eq. (14) 1, the governing equation of a shunted 

system can be augmented by adding the shunted 

damping matrix in the Laplace domain : 

( ZsnOOr ) s w + K w = f ,  xt(S) (18) 
MsZw+\ C ~ I + ZsnCps 

The additional damping due to a shunt circuit is 

added to the inherent damping of a piezo/beam 

system. In the next section, we will discuss the 

muhimode damping capabilities of the negative 

capacitive shunting by deriving the transfer func- 

tion of a cantilevered piezo/beam system. 

4. Equations of Motion of a Shunted 
P iezo /Beam System 

A mathematical model is developed to describe 
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the flexural vibration behavior of a cantilevered 

piezo/beam system with negative capacitive shunt 
where 

circuits. The equations of  motion of a shunted 

piezo/beam system are obtained through Hamil- 

ton's principle. A schematic configuration of a 

piezo/beam system with a series and a parallel 
and 

shunt circuit is shown in Fig. 1. The beam has 

length l~, width bb, thickness hb, Young's mo- 

dulus Eb, and mass density pb. The piezoelectric 

material has thickness hp, the elastic modulus 

measured at constant electrical field (e.g., short 

circuit) Eg,  and the piezoelectric constants d31 in 

the longitudinal direction. 

It is assumed that the transverse displacement, 

w, of all points on any cross section of piezo/  

beam layers is considered to be equal. Shear 

deformation and rotary inertia of  the beam and 

piezo layers are neglected for a Bernoull i-Euler 

beam. For  a symmetric configuration of PZT 

patches, the net longitudinal displacement of the 

beam is assumed zero. In addition, the base beam 

layer and the shunted piezoceramic layers are 

considered to be perfectly bonded together. 

The constitutive equations for a piezoelectric 

element depends on the mechanical stress, a, and 

strain, e, as well as the electric field, E ,  and the 

electric displacement, D. A common form of cons- 

titutive equations for passive shunt damping is 

[ E l  = [ E ;  -~h] I ; ]  (19) 

where Es is the elastic modulus at constant dis- 

placement, h is the piezoelectric constant, and/5' is 

the dielectric constant, where 

The kinetic energy of a piezo/beam system can 

be described as 

where 

T =  Tb+2  To (20) 

l ~lb 
T~=TJ o o ~  { Ow V \ O r /  dx 

and 

1 rt~ / tgW \2 
T,=-~J ° o,A,(~-)  [H (x-xl) - H  (x-x2)] dx 

The strain energy of a piezo/beam system can be 

described as 

U=Ub W 2Up 

1 ptb I 02W \2 
U b = T J  ° Eblbl ~-x2 ) dx 

U o = z f  (e~a+ED)dV 

I flbV~Et { OZW ~2 2 OZW 
=2;o L'~'P'"\ Ox~-x 2 ] + A"h~lDz"(~x2 ) 

+ Aot3~D z] [ H (x -xa) - H ( x -xz)  ] dx 

(21) 

~W=~WszWc~WeaWdWex-b~W~ (22) 

~Wex= fo'bf (x, t) ~w dx 
f t~ Ow ~W~=Jo cb~- ~w dx 

and H is the Heavyside's fuction and Q is the 

electric charge generated by an external force. 
The equations of  motion and all the natural 

and geometric boundary conditions can be ob- 
tained by applying the Hamilton's  principle 

! 

where z n = ~ -  hp(hb+hp) and w is the transverse 

displacement of  the beam. Also, Ab and A~ are 

the cross sectional area of  the beam and the piezo 

layer, respectively. Furthermore, lb and It, are the 

area moments of  inertia about the neutral axis of 

the each layer. In the above equations, (x2--xl) is 

the length of the PZT patch. The subscripts b and 

p represent the base beam and the piezoceramic, 

respectively. The virtual work consists of four 

terms : the first term is for a work done by the top 

shunted piezo damper connected to the terminals 

of a piezoceramic with a resistor-negative capaci- 

tor branch circuit in series, the second is due to 

the bottom shunted piezo damper connected in 

parallel, the third is due to the external force, and 

the forth is due to the inherent damping force of 

a base structure. 
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all=a f,"( T -  U+ W) dt=O (23) 

where h and t2 are the end points in the time 
domain. Substituting the strain energy and kine- 
tic energy into the Hamilton's principle yields the 
following equation of  motion and the electrical 
circuit equations. 

~w aw o~w 

a~w ~ 0% +2[ppAp(fff )+Eflp(~;x4 )][H(x-xl)-H(x-xz)] (24) 

The electrical circuit equations for a top piezo 
and a bottom piezo with a resistor-negative ca- 
pacitor shunt branch circuit are 

a~w 

l dQ [ H x - x  - H x - x  
(25) 

I a %  
[2h'lh'(hb+h')(ax2 )+ b lp o 

(26) 

The first terms of Eqs. (25) and (26) define the 
sensor voltages generated by the curvature of the 
deformed beam. The second terms are due to the 
inherent capacitor voltages of piezo patches. The 
third terms are defined as shunt voltages, which 
are fed back to piezoceramics. 

The assumed modes method is used to dis- 
cretize the governing equation [Eq. (24)] into a 
set of  ordinary differential equations. The flexural 
motion for a cantilever beam is approximated by 

n 

w(x, t ) :  .~x!k,(x) W,(t)= [¢ r ] r [w]  (27) 

where ~i(x) ----cos f l / x - - cos /~ /x - a ; ( s i nh  f l~c-  
sin ~;x). Here the constants ai are the mode 
shape coefficients (Inman, 1996). Applying mode 
shape functions to the equation of motion (24) 
results in the following discretized differential 
equations of the shunted piezo/beam system : 

MW(t) +CbW(t) +KW(t)  =fext+fp**o (28) 

where 

M = p~Ab i t~i~irdx 

+ 2ppAp fo *ctictr[ H (x-x,) - H (x-  xz) ] dx, 

Cb=Cb fo ~¢'; ¢' "T x 

K=Etdb fo l~;' Vd'rdx 

+ 2Eglpfot¢;, ¢~,r [H (x -x,) - H  (x -xz) ] dx 

fext=f0 ted(x, t)dx, 
' ' 

fp~o =-~  ( b,d3,Ep VsS# ( ' ' 

+ E eA + ) l ~, , )dx bpd3tEp V~ (hb hp f ~[o (x-xt)-3 (x-xzl] 

and d3~ is the piezoelectric material constant. The 
shunt voltages VsS# and Vs~ are generated from a 
series and a parallel resistor-negative capacitor 
branch circuit. 

The charge generated by the PZT patches due 
to the vibration of the cantilevered piezo/beam 
can be determined through the integration of the 
electric field displacement (IEEE, 1978). 

with 

Q (t) = fADdA (29) 

[D]=[d]r[T]+[e]r[E] (30) 

[d] ,  I T ] ,  [e] and [E]  represent the piezo-elec- 
tric strain constant, stress, dielectric permittivity 
and applied field strength matrix, respectively. 
Substituting the mode shape function into Eq. 
(29), the output of a piezo sensor can be derived 
as follows : 

Q,(t) = [2COD. + C~( Vs~ + Vs~) ] 
(31) 

[ H  (x - x,) - H (x - x2) ] 

where 

and 

D,=fo ~x-x [H(x-x , )  - g ( x  -x~) ] dx 
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The current across PZT electrodes can be obtain- 

ed from the induced charge of the piezoceramic 

sensor as follows: 

" V s ~ +  VsH)] Ii(t)  = =E2CoDnW.(t)+C~( "sE "eA 
(32) 

[ H ( x - x l )  - ( x - x2 ) ]  

According to Eq. (5), the shunt voltages are given 

by:  

In the series connection, 

VS~ = - ZS~ L ( t ) 

l i33) 

[ H (x -x , )  - H (x -x , )  ] 

In the parallel connection, 

Vs~= - Z;# I, ( t ) 
( R~A ~{ CoD~W.(t) +C~sVsJ } (34) 

-- \ I -sCnRpA] 

[ H ( x - x ~ )  - H ( x - x 2 )  ] 

The shunt voltages can be rewritten after equating 

the inherent capacitance of PZTs, Cp, to the 

external negative capacitance, - -Cn.  

( 1 -- S CpRsE 
sZC~Rs E )CoD.W~( t )  (35) VS~ I 

VsPH A = --  R,aCoDn W ~ ( t ) (36) 

Substituting these shunt voltages into the piezo 

force f ~ o  in Eq. (28), the final form of the gover- 

ning equations are given by 

MlYd(t)  + C t o t a t W ( t )  + K W ( t )  = fex t  (37) 

where 

Ctotat = Cb + f piezo 

It should be noted here that the piezo shunted 

force would be an additional damping term of the 

piezo/beam system and Eq. (37) corresponds to 

Eq. (18). 

5. Theoretical 
Analyses and Discussions 

Theoretical analyses are performed to examine 

the capabilities of vibration damping control by 

using two different types of the negative capaci- 

tive shunting. A pair of piezoceramics are bonded 

to each side of the root of the aluminum beam. 

The edge of the piezoceramic is 0.1 cm away from 

the fixed end of the beam. The piezoceramic is 

poled through their thickness and elongate leng- 

thwise so that they are operating in transverse 

mode (d31=--320E-12). The beam is grounded 

and the two terminals of the top piezoceramic are 

connected with a series resistor-negative capaci- 

tor branch circuit while those of the bottom piezo- 

ceramic are connected with it in parallel as shown 

in Fig. 1. Table 1 lists the physical and geometri- 

cal parameters of the aluminum beam and piezo- 

ceramic. 

A negative capacitive shunting is applied theo- 

retically to reduce the muhimode vibration am- 

plitudes of a cantilever beam over a broad fre- 

quency range. Figure 5 shows the analytical out- 

put response of the shunted piezo/beam system 

constructed by implementing the series resistor- 

6O 
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] - -  Shunt (Sef*e$] 

, I i 

1 ! i ~ [ { 

Fig. 

500 1000 1500 2000 
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Analytical frequency response function of 
shunted piezo/beam system with a series neg- 

ative capacitive shunting 

Table 1 Physical and geometrical properties of the beam and piezoceramic 

Young's Modulus Density Length Width Thickness 
(pa) (Kg/m a) (m) (m) (m) 

Aluminum 7.1E 10 2700 2.0E- 1 2.54E 2 0.8E-3 

PZT 6.2E10 7800 4.5E 2 2.54E-2 2.6E-4 
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Analytical frequency response function of 
shunted piezo/beam system combined a series 
with a parallel negative capacitive shunting 

negative capacitor shunt branch circuit. The vi- 

bration amplitude increases as the frequency is 

increased. This phenomenon is easily explained 

by considering the material loss factor equation 

[Eq. (12a)] and Fig. 4(b) for a series resistor- 

negative capacitor shunt circuit. Ths figure shows 

that the loss factor of the non-dimensional  mec- 

hanical impedance decreases as the non-dimen- 

sional frequency is increased. In the computer 

simulation, the resistance of 5 Ohm and the ca- 

pacitance of  200 n F  are used. They are deter- 

mined by a t r ia l -and-er ror  method. 

A parallel resistor-negative capacitive branch 

circuit is implemented to obtain the behavior of 

the FRF.  Figure 6 shows the analytical transfer 

response of the shunted piezo/beam system with a 

parallel resistor-negative capacitor branch cir- 

cuit. The result shows an opposite behavior in 

comparison with the series connection case. The 

vibration amplitude decreases with the increasing 

frequency. The material loss factor equation [Eq. 

(12b) ] and Fig. 4(b) validate this phenomenon. 

The loss factor for the parallel resistor-negative 

capacitor branch circuit increases as the non- 

dimensional frequency is increased. The resistor 

value of 200 Ohm and capacitance of 200 n f  are 

used in the simulation. The shunt resistor values 

used in the series and parallel negative capacitive 

shunt damper are obtained by a t r i a l -and-er ror  
method. 

Figure 7 shows the transfer function of the 

piezo/beam system when a series and a parallel 

negative capacitive shunting is simultaneously 

applied. All modes of the system are uniformly 

suppressed. More specifically, the vibration am- 

plitudes are reduced by more than 25 dB from 

the pick vibration amplitude of  the open circuit 

across the whole frequency range. It is worthwhile 

to mention that the effective attenuation of the 

vibration amplitude is achieved by decreasing the 

shunt resistance for series shunting and increasing 

the shunt resistance for parallel shunting. These 

facts can be explained by considering the rela- 

tionship between the loss factor and the non- 

dimensional frequency. 

6.  C o n c l u s i o n s  

A novel mult iple-mode vibration damper that 

combines a series with a parallel negative capaci- 

tive shunt circuit has been introduced in this 

paper. A mathematical model using the assumed 

mode shape has been developed to describe the 

flexural vibration of beams subjected to the elec- 

tromechanical interactions of  the piezo/beam sys- 

tem shunted with a series and a parallel resistor- 

negative capacitive branch circuit. The general 

modeling of a negative capacitance shunt circuit 

has been presented by incorporating the feedback 

shunt voltage generated by the shunt impedance. 

The top piezoceramic connected with a series 

resistor-negative capacitor branch circuit is capa- 

ble of suppressing the vibration amplitudes in the 
low frequency range. The bottom piezoceramic 

connected with a parallel resistor-negative capac- 

itor branch circuit is capable of suppressing the 

vibration amplitudes in the high frequency range. 

These phenomena can be understood by consi -  
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dering the stiffness ratio and loss factor with res- 

pect to the non-dimensional  frequency. By com- 

bining the two negative capacitive shunt circuits, 

a mult iple-mode piezoelectric shunted actuator 

is invented which is capable of  suppressing all 

the structural modes simultaneously. The theo- 

retical results show that the negative capacitive 

shunting reduces the vibration amplitudes of a 

piezo/beam system by more than 25 dB over the 

whole frequency range. Hence, the negative ca- 

pacitive shunted actuator developed in this study 

can serve as an invaluable tool for the multimode 

vibration damping in many engineering applica- 

tions. 
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